Development, Characterizations and Biocompatibility Evaluations of Intravitreal Lipid Implants
نویسندگان
چکیده
BACKGROUND The treatment of posterior eye diseases is always challenging mainly due to inaccessibility of the region. Many drugs are currently delivered by repeated intraocular injections. OBJECTIVES The purpose of this study was to investigate the potential applications of natural triglycerides as alternative carriers to synthetic polymers in terms of drug release profile and also biocompatibility for intraocular use. MATERIALS AND METHODS In vitro/in vivo evaluations of intravitreal implants fabricated from the physiological lipid, glyceride tripalmitate containing clindamycin phosphate as a model drug was performed. The micro-implants with average diameter of 0.4 mm were fabricated via a hot melt extrusion method. The extrudates were analyzed using scanning electron microscopy, differential scanning calorimetry, and in vitro drug dissolution studies. For biocompatibility, the implants were implanted into rabbit eyes. Clinical investigations including fundus observations, electroretinography as well as histological evaluations were performed. RESULTS In vitro tests guaranteed usefulness of the production method for preparing the homogenous mixture of the drug and lipid without affecting thermal and crystalinity characteristics of the components. In vitro releases indicated a bi-phasic pattern for lower lipid ratios, which were completed by the end of day three. With higher lipid ratios, more controlled release profiles were achieved until about ten days for a lipid ratio of 95%. Clinical observations did not show any abnormalities up to two months after implantation into the rabbit eye. CONCLUSIONS These results suggest that although the implant could not adequately retard release of the present drug model yet, due to good physical characteristics and in vivo biocompatibility, it can represent a suitable device for loading wide ranges of therapeutics in treatment of many kinds of retinochoroidal disorders.
منابع مشابه
Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye.
INTRODUCTION Frequent intravitreal injections are currently the preferred treatment method for diseases affecting the posterior segment of the eye. However, these repeated injections have been associated with pain, risk of infection, hemorrhages, retinal detachment and high treatment costs. To overcome these limitations, light-responsive in situ forming injectable implants (ISFIs) may emerge as...
متن کاملNovel Development of Biocompatible Coatings for Bone Implants
Prolonged life expectancy also results in an increased need for high-performance orthopedic implants. It has been shown that a compromised tissue-implant interface could lead to adverse immune-responses and even the dislodging of the implant. To overcome these obstacles, our research team has been seeking ways to decrease the risk of faulty tissue-implant interfaces by improving the biocompatib...
متن کاملDissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.
Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycr...
متن کاملBiocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids.
Triglycerides are a promising class of material for the parenteral delivery of drugs and have become the focus of tremendous research efforts in recent years. The aim of this study was to investigate the biocompatibility of glyceroltripalmitate as well as the influence of cholesterol and distearoyl-phosphatidyl-choline (DSPC) on the erosion behavior of the lipid. For these investigations, two i...
متن کاملRecent Progress in Mechanically Biocompatible Titanium-Based Materials
Mechanical and biological biocompatibility is important consideration for materials that are used as metallic implants. During the past two decades, many β-type titanium alloys composed of non-toxic and hypoallergenic elements with low Young’s moduli have been developed worldwide. Recently, the development of new titanium-based materials to improve the mechanical and biological biocompatibility...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014